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Abstract. The global structure of the renormalization-group flows of a model with isotropic
and cubic interactions is studied using the massive field theory directly in three dimensions. The
four-loop expansions of the β-functions are calculated for arbitrary N . The critical dimensionality
Nc = 2.89 ± 0.02 and the stability matrix eigenvalues estimates obtained on the basis of the
generalized Padé–Borel–Leroy resummation technique are shown to be in a good agreement with
those found recently by exploiting the five-loop ε-expansions.

1. Introduction

The study of the critical properties of magnetic phase transitions in three-dimensional (3D)
cubic crystal is a problem which has attracted theoretical effort over more than 25 years. By
using the lower-order renormalization-group (RG) approach, Wilson and Fisher [1], Aharony
[2], and Ketley and Wallace [3, 4] showed that in the critical region the fluctuation instability
of continuous phase transitions may be observed, and that it may lead to the isotropization of
the system with a cubic anisotropy. This fact gave rise to the question of what regime of the
critical behaviour is actually realized in a 3D cubic crystal withN = 3. It was soon understood
that the calculation of the critical dimensionality Nc of the order parameter is the crucial point
in studying critical phenomena in a cubic crystal. Indeed, the critical value Nc separates two
different regimes of critical behaviour of the system. For N > Nc the cubic rather than the
isotropic fixed point is stable in 3D. At N = Nc the points interchange their stability so that for
N < Nc the stable fixed point is the isotropic one. However, attempts to evaluate the critical
dimensionality resulted in dramatically different estimates.

In fact, the one-loop RG analysis of the stability matrix eigenvalues of the cubic and
isotropic fixed points as well as some symmetry arguments (see section 2) predicts that Nc

should lie between 2 and 4. Many years ago the three-loop expansion for Nc as a power
series in ε was obtained [3]. Summation of that short series at ε = 1 (D = 3) by means
of the Padé approximant [1/1] yielded the value Nc = 3.128 [5], while making use of the
Padé–Borel resummation method results in the estimate Nc = 3. In contrast to this, the
value Nc = 2.3 has been found on the basis of the variational modification of the Wilson
recursion relation method in [6]. Later, however, Newman and Riedel showed by decoupling
the infinite system of the recursion relations for the scaling fields and then solving them that
for D = 3, Nc ∼ 3.4 [7]. At the same time, the classical technique of high-temperature
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expansions, under some circumstances, allowed one to establish that for N = 3 the isotropic
critical asymptotics in a cubic crystal is unstable [8], thus implying Nc < 3. Ten years
ago the analysis of the critical behaviour of the (mn)-component field model, which has a
good number of interesting applications to the phase transitions in real substances, has been
carried out within the three-loop RG approach in three dimensions. The calculation of the
stability matrix eigenvalues for the cubic model (m = 1, n = 3) provided the stability of
the cubic fixed point in 3D, and the critical dimensionality turned out to be equal to 2.91
[9]. In agreement with this, the estimate Nc = 2.9 was given in [10]†. More recently,
Kleinert and Schulte–Frohlinde calculated the RG functions for the cubic model in (4 − ε)

dimensions up to five-loop order [11]. Summation of the critical dimensionality expansion
with the help of the Padé approximant [2/2] gave the estimate Nc = 2.958‡. The cubic
fixed point eigenvalues found by means of a simple resummation algorithm of the Borel type,
accounting for the large-order behaviour of the β-functions when the anisotropy parameter
is very small [13], indicated that the cubic point is stable in 3D [14]. Finally, in the recent
work [15] by using finite-size scaling techniques and the high-precision Monte Carlo (MC)
simulation it has been suggested that Nc coincides with three exactly. Such strong scattering
in the estimates of Nc motivated us to study this problem with particular care. Calculation
of the critical dimensionality as well as the eigenvalue exponents for the cubic and isotropic
fixed points by exploiting the higher-order RG approach in three dimensions and generalized
Padé–Borel–Leroy (PBL) resummation technique is the main goal of the paper. As will be
shown, our estimates for Nc and eigenvalues are in excellent agreement with recent results
[14] obtained on the basis of the five-loop ε-expansions.

The layout of the paper is as follows. In the next section the model Hamiltonian is
introduced and the massive field-theoretical RG procedure in fixed dimensions is formulated.
The perturbative expansions for β-functions for genericN are then deduced up to the four-loop
order. In section 3 the structure of the RG flows of the model are investigated and the fixed
point locations are calculated using the generalized PBL resummation method. The eigenvalue
exponents of the most intriguing O(N)-symmetric and cubic fixed points are evaluated for the
physically significant case N = 3 and the stability problem is solved. The numerical estimate
of the critical dimensionalityNc, at which the topology of the flow diagram changes, is obtained
by resumming both the four-loop RG expansions for the β-functions in 3D and the five-loop
ε-expansion for Nc at ε = 1. In the conclusion the results of the investigation are discussed,
along with the predictions and numerical estimates obtained earlier on the basis of the same
or other theoretical approaches.

2. The model, RG procedure and β-functions

We start from the fluctuation Hamiltonian

H =
∫

ddx

[
1

2
(m2

0ϕ
2
i + ∂µϕi∂µϕi) +

1

4!

(
u0G

1
ijkl + v0G

2
ijkl

)
ϕiϕjϕkϕl

]
(1)

where ϕi , i = 1, . . . , N , is the real vector order parameter field in fixed d and m2
0 is the linear

measure of the temperature, u0 and v0 denote the ‘bare’ coupling constants. The symmetrized

† In this paper the four-loop RG expansions of the model are reported for the cases N = 0 and 3 only. Critical
exponents estimates for the cubic fixed point have been obtained in three dimensions by making use of the simple
Chisholm–Borel resummation method. However some analysis for Nc as well as for the eigenvalue exponents of the
cubic fixed point has not been given.
‡ It was established that the diagonal or near-diagonal Padé approximants exhibit the best approximating properties.
See, for instance, [12].
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tensors associated with isotropic and cubic interactions are

G1
ijkl = 1

3

(
δij δkl + δikδjl + δilδkj

)
G2

ijkl = δij δikδil (2)

respectively.
Model (1) has a number of interesting applications to the phase transitions in three-

dimensional simple and complicated systems. Indeed, when N = 1 Hamiltonian (1) describes
the critical phenomena in pure spin system (Ising model), while for N = 2 it corresponds to
the anisotropic XY model describing structural phase transitions in ferroelectrics as ordering
of the two-component alloys [1, 16]. The magnetic and structural phase transitions in a cubic
crystal are governed by model (1) as N = 3. In the replica limit N → 0 the Hamiltonian (1) is
known to determine the critical properties of weakly disordered quenched systems undergoing
second-order phase transitions [17] with a specific set of critical exponents [18]. Finally, the
case N → ∞ corresponds to the Ising model with equilibrium magnetic impurities [19]. In
this limit the Ising critical exponent of specific heat α changes its sign and takes the Fisher
renormalization [20] together with ν and γ : α → −α/(1−α), ν → ν/(1−α), γ → γ /(1−α).

To calculate the β-functions normalizing conditions must be imposed on renormalized
one-particle irreducible inverse Green functions

!
(N)
R (p;m, u, v;$; d) = ZN/2

ϕ !(N)(p;m0, u0, v0;$; d)
given by the corresponding Feynman diagrams, $ is the ultraviolet momentum cut-off. Within
the massive field-theoretical RG scheme [21] at zero external momenta and at the limit$ → ∞
they are normalized in a conventional way [22]:

!
(2)
R (p,−p;m, u, v; d)∣∣

p=0 = m2

∂

∂p2
!
(2)
R (p,−p;m, u, v; d)∣∣

p=0 = 1

!
(4)
uR({pi};m, u, v; d)∣∣{pi }=0 = m4−du

!
(4)
vR({pi};m, u, v; d)∣∣{pi }=0 = m4−dv

(3)

where m, u and v are the renormalized mass and dimensionless coupling constants. The
vertices !(4)

u and !(4)
v are connected with the vertex function without external lines normalized

at zero external momenta

!
(4)
ijkl(0) = !(4)

u · G1
ijkl + !(4)

v · G2
ijkl .

From equations (3) the expansions for the renormalization constants Zϕ , Zu and Zv may be
obtained

Z−1
ϕ = ∂

∂p2
!(2)(p,−p;m0, u0, v0)

Z−1
u = 1

u0
!(4)
u (0;m0, u0, v0)

Z−1
v = 1

v0
!(4)
v (0;m0, u0, v0).

(4)

These constants relate the ‘bare’ mass m0 and coupling constants u0 and v0 of the initial
Hamiltonian (1) to the corresponding physical parameters

m2
0 + δm2

0 = m2 m = Zϕ!
(2)(p,−p;m0, u0, v0)

u0 = m4−d Zu

Z2
ϕ

u v0 = m4−d Zv

Z2
ϕ

v.
(5)
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With relations (5) taken into account, the β-functions can be calculated via the formulae

∂ ln u0

∂u
βu +

∂ ln u0

∂v
βv = (d − 4)

∂ ln v0

∂u
βu +

∂ ln v0

∂v
βv = (d − 4)

(6)

where βg ≡ ∂g/∂| lnm|, g = {u, v}.
For each Feynman graph contributing to the RG functions, the corresponding contractions

are computed by the algorithm developed in [23]. The combinatorial factors as well as the
integral values are known from [24]. After some work we obtain the four-loop expansions for
the β-functions in three dimensions:

βu = u

{
1 − u − 6

N + 8
v +

1

(N + 8)2

[
3
(
2.024 691N + 9.382 716

)
u2

+44.444 444uv + 10.222 222v2
]− 1

(N + 8)3

[
3
(
0.449 648N2

+18.313 459N + 66.546 806
)
u3 + 3

(
6.646 878N + 164.613 849

)
u2v

+3
(
0.621 889N + 100.955 929

)
uv2 + 65.937 285v3

]
+

1

(N + 8)4

[−(0.155 646N3 − 35.820 204N2 − 602.521 231N

−1832.206 732
)
u4 − 3

(
1.352 882N2 − 182.073 890N

−2064.170 701
)
u3v + 3

(
27.250 336N + 2110.408 809

)
u2v2

+9
(
1.291 017N + 308.599 361

)
uv3 + 495.005 747v4

]}
(7)

βv = v

{
1 − 1

N + 8

(
12u + 9v

)
+

1

(N + 8)2

[(
3.407 407N + 54.814 815

)
u2

+92.444 444uv + 34.222 222v2
]− 1

(N + 8)3

[−(1.251 107N2

−41.853 902N − 469.333 970
)
u3 + 9

(
0.248 784N + 136.511 768

)
u2v

+957.781 662uv2 + 255.929 737v3
]

+
1

(N + 8)4

[(
0.574 653N3

−0.267 107N2 + 584.287 672N + 5032.692 260
)
u4 + 3

(
0.057 375N2

+107.641 680N + 5989.283 536
)
u3v + 3

(
7321.464 604

−16.494 003N
)
u2v2 + 11 856.956 858uv3 + 2470.392 521v4

]}
. (8)

These equations are known to have four solutions corresponding to the trivial Gaussian,
the Ising, the isotropic (Heisenberg) and the cubic fixed points [2]. The most intriguing of
them are the isotropic and cubic ones. The one-loop approximation analysis of the eigenvalue
exponents for these points yields the upper boundary value for the critical dimensionality Nc,
Nc = 4.

To determine the lower boundary of Nc one should attract the specific symmetry property
of model (1), when N = 2 [25]. Namely, the transformation of the field components

ϕ1 → 1√
2
(ϕ1 + ϕ2) ϕ2 → 1√

2
(ϕ1 − ϕ2) (9)
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combined with substitution of the quartic couplings

u → u + 3
2v v → −v (10)

does not change the structure of the initial Hamiltonian itself. As a result, the β-functions (7)
and (8) should obey certain symmetry relations [26]:

βu
(
u + 3

2v,−v
) = βu(u, v) + 3

2βv(u, v)

βv
(
u + 3

2v,−v
) = −βv(u, v)

(11)

but their form remain unchanged. However, for N = 2 transformations (9) and (10) result
in the relocation of the coupling constants values so that the cubic and Ising fixed points are
transformed into each another at the 3D RG flow diagram. Since the exact RG equations
always have the Ising fixed point, which inevitably is the saddle-knot one, these equations
should also have the cubic fixed point, which will be unstable. In this situation, the isotropic
fixed point, again always existing in the exact RG equations, should be the stable knot only.
Therefore, we conclude that the lower boundary of Nc is not less than two. The real value of
Nc can be obtained only on the basis of analysis of the RG flow diagram structure, provided
the β-functions of the model are calculated in sufficiently high-order RG approximations and
then processed by appropriate resummation techniques.

3. Resummation, fixed points and stability

It is well known that the field-theoretical RG series are divergent. The character of their large-
order behaviour is well established only for simple O(N)-symmetric models [27–29]. The
coefficients of the series at large k were shown to behave as c(−a)kk!kb, where the asymptotic
parameters a, b and c are assumed to be calculated for each RG function. Knowledge of the
exact values of the asymptotic parameters in combination with the most powerful resummation
procedure of the Borel transformation with a conformal mapping, first proposed in [30], made
it possible to develop the accomplished quantitative theory of critical behaviour of simple
systems [31, 32].

At the same time, the asymptotic nature of RG functions of anisotropic models is still
unknown. Calculating the large-order asymptotic behaviour for the series in such models is a
very difficult problem. That is why, lacking any information about the large-order behaviour,
either the simple Padé–Borel or Chisholm–Borel resummation procedures are used. The latter
technique, however, possesses at least two inherent drawbacks. First, some ambiguity in the
calculation of coefficients of denominators of the Chisholm approximants is unavoidable [33].
Second, the Chisholm–Borel procedure does not hold the specific symmetry properties of a
model. At the same time, exploiting the Borel transformation in combination with the Padé or
Chisholm approximants shows that the results of calculation are very sensitive to the choice of
the type of approximants. This may lead to estimates which do not provide reliable predictions
even in the higher-loop RG approximations [34]. Besides, in the framework of both schemes
it is very difficult to determine any error bounds for the evaluated quantities.

In this paper we attempt to overcome the outlined difficulties by applying the PBL
resummation method, generalized for the two-coupling-constant case, to processing the RG
expansions (7) and (8). This method, first introduced by Baker et al in [35], turned out to
be highly efficient when used to study the critical behaviour of the simple O(N)-symmetric
models in 3D. The critical exponent estimates obtained within the framework of this technique
are regarded nowadays as the most accurate values, as those of [30, 31, 36]. We motivate our
choice of the PBL resummation method with the following reasons.
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• 3D RG expansions for the β-functions of the cubic model alternate in sign. Therefore,
using the PBL resummation technique is quite natural.

• It can be expected that for complex models with more than one coupling constant,
the asymptotics of the RG series at large orders will include a factor k!kb. The PBL
resummation method removes divergences of this type.

• The PBL resummation method allows one to determine the error bounds for the physical
quantities to be calculated, in a natural way.

The generalized PBL resummation procedure consists of the following. Let a physical quantity
F(u, v) be represented by a double series

F(u, v) =
∑
i,j

fiju
ivj (12)

where coefficients fij ∼ (i +j)!(i +j)b at large orders (i, j → ∞), the additional parameter b
being an arbitrary non-negative number to be defined below. Associated with the initial series
(12) is the function

F(u, v; b) =
∫ ∞

0
e−t t bB(ut, vt) dt. (13)

The Borel–Leroy transform B(x, y) is the analytical continuation of its Taylor series

B(x, y) =
∑
ij

fij

!(i + j + b + 1)
xiyj (14)

which is absolutely convergent in a circle of non-zero radius. In order to calculate the integral
in (13) one should continue analytically B(x, y) for 0 � x < ∞ and 0 � y < ∞. To this
end, the rational Padé approximants [L/M] (x, y) are used. The Padé approximant method is
determined in a conventional way [12]. Let us consider a ‘resolvent’ series

B̃(x, y, λ) =
∞∑
k=0

λk
k∑

l=0

fl,k−lx
lyk−l

!(k + b + 1)
=

∞∑
k=0

Akλ
k (15)

where coefficients Ak are uniform polynomials of kth order in u and v. The sum of the series
is then approximated by

B(x, y) = [L/M]
∣∣
λ=1. (16)

The Padé approximants [L/M] in λ are given by

[L/M] = PL(λ)

QM(λ)
(17)

where PL(λ) and QM(λ) are polynomials of degrees L and M , respectively, with coefficients
depending on x and y which should be determined from the conditions

QM(λ)B̃(x, y; λ) − PL(λ) = O(λL+M+1)

QM(0) = 1.
(18)

Replacing variables x = ut and y = vt in the Padé approximants and then evaluating the
Borel–Leroy integral

F(u, v; b) =
∫ ∞

0
e−t t b[L/M]

∣∣
λ=1 dt (19)

we obtain the approximate expressions for RG functions.
Among Padé approximants the diagonal (L = M) or near-diagonal ones were proved to

exhibit the best approximating properties [12]. However, as the degree of the denominator M
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increases, the number of possible poles of the approximant increases too. If some of the poles
belong to the positive real semiaxis, the corresponding approximant should be rejected. Due
to this the choice of ‘working’ approximants, which might be used for analytical continuation
of the Borel–Leroy image onto the complex cut plane, is largely limited. On the other hand,
varying the free parameter b in the Borel–Leroy transformation (13) allows one to optimize
the resummation procedure under the condition that the fastest convergence of the iteration
process is achieved. So, taking into account the above-mentioned remarks, in order to find the
locations of the fixed points we adopt the following scheme. For the fixed N , the β-functions
are resummed by virtue of the transformation (13) in the highest-loop orders by shifting the
transformation parameter b. For an analytical continuation of the Borel–Leroy transforms
Bu(u, v), Bv(u, v) over the cut plane the most appropriate Padé approximants [2/1], [3/1]
and [2/2] are used. The locations of the fixed points are then determined for each b from the
solution of the set of equations: βres

u (uc, vc) = 0, β res
v (uc, vc) = 0. The ‘true’ locations are

obtained by averaging over the values given by the approximants under the optimal value of the
parameter b, at which the quantity |1 − FL(u, v; b)/FL−1(u, v; b)| reaches its local minima.
The quantity FL(u, v; b) is evaluated for theL-partial sum of the series in equation (19), where
L denotes the step of truncation of the series.

The results of the computation of the cubic fixed point locations depending on the
parameter b are presented for the physically important case N = 3 in figure 1. Three curves
correspond to the three Padé approximants. The parameter b shifts from 0 to 3. As can be
seen from the figure the optimal value of b is zero. At this point the numerical values of the
cubic fixed point locations given by different approximants are the closest to each other. The
result of computing the cubic fixed point locations for N = 3 are also presented in table 1. In
the first three columns of the table the fixed point locations values found by means of the Padé

Figure 1. Curves demonstrating the dependence of the results of calculating the cubic fixed point
locations on the transformation parameter b for N = 3. The upper curve (�) corresponds to the
[2/1] approximant, while the middle (�) and lower (�) curves correspond to the [2/2] and [3/1]
approximants, respectively.
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Table 1. Coordinates of the cubic fixed point of RG equations for N = 3 found under the optimal
value of the transformation parameter b = 0.

[2/1] [3/1] [2/2] Average value Average over [2/2]

uc 1.3536 1.3338 1.3410 1.3428 ± 0.0200 1.3425
1.3480a, 1.3357b

vc 0.0526 0.1026 0.0894 0.0815 ± 0.0300 0.0937
0.0904a, 0.0906b

a Quoted from [9].
b Quoted from [10].

approximants [2/1], [3/1] and [2/2] at b = 0 are given. Averaging the results of processing
over all of the approximants under the optimal value of b gives the estimates presented in the
fourth column of the table. We adopt these numbers as the final estimates for the cubic fixed
point locations found within the four-loop approximation. As the degree of accuracy for these
approximate values we take the maximum deviations of the average values of the fixed point
locations from those given by the approximants at b = 0.

One can observe, looking at figure 1, that the values of the cubic fixed point locations
given by the symmetric approximant [2/2] depend weakly on the shift parameter b. Averaging
over all the values given by this approximant within the interval [0, 3] results in the cubic fixed
point locations estimates presented in the fifth column of table 1. The coordinates of the cubic
fixed point found earlier on the basis of the three- and four-loop approximations, using the
Chisholm–Borel resummation method, are presented for comparison. These numbers include
the normalizing multiplier 11

9 needed to compare our β-functions with those obtained in [9, 10].
To verify the correctness of the chosen approach let us apply the above considered scheme

to estimate the fixed point locations of the O(3)-symmetric model for which the numerical
results are well known. The six-loop 3D RG expansion for the β-function of this model
was reported in [30, 35]. The PBL resummation of that series using eight types of Padé
approximants [2/1], [3/1], [2/2], [4/1], [3/2], [5/1], [4/2] and [3/3] yields, after solving
the equation βres(gc) = 0, the picture displayed in figure 2. It is seen that the values of
the isotropic fixed point location calculated in the highest RG orders with the help of the
approximants [3/3], [4/2] and [3/2] are very weakly dependent on the parameter b varied
within the interval 0 � b � 15. The curves corresponding to these approximants are intersected
at the point b = 4.5. Therefore, b = 4.5 is the optimal value of the transformation parameter
for which the fastest convergence of the iteration procedure is ensured. For b = 4.5 the
central value estimate of the isotropic fixed point is gc = 1.392. The maximum deviation of
the central value from the values given by some of the approximants [3/3], [4/2] and [3/2]
at the point b = 10 is adopted approximately as an apparent accuracy of the calculation,
5 = 0.0013. Such a small error can be explained by the small dispersion of the curves
within the range 5 � b � 10. So, the estimate gc = 1.3920 ± 0.0013 is in excellent
agreement with those found more then 20 years ago in [30, 35] as well as with recent results
of [31].

Within the framework of the four-loop approximation there are only three appropriate Padé
approximants. Averaging the results of computing the isotropic fixed point location given by the
approximants [2/1], [3/1] and [2/2] under the optimal value of the transformation parameter
results in the estimate gc = 1.3925 ± 0.0070. The error was determined again through the
maximum deviation of the central value from those given by each of the approximants at b = 0.
It is seen that the four-loop estimate of the coordinate of the isotropic fixed point is in a good
accordance with the best ones followed from the six-loop consideration.
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Figure 2. The results of computation of the O(3)-symmetric fixed point locations from the three-
to the six-loop approximations obtained on the basis of the PBL resummation method with eight
types of the approximants: ♦, [2/1]; �, [3/1]; �, [2/2]; �, [4/1]; �, [3/2]; •, [5/1]; ◦, [4/2];
×, [3/3].

Note, however, that the coordinate of the O(3)-symmetric fixed point calculated within the
five-loop approximation does not approach the ‘exact’ value. Namely, the PBL resummation
procedure leads to the estimate gc = 1.3947 ± 0.0040. Although the error of the calculation
became visibly smaller, the central value of the fixed point location stepped aside from the
four- and six-loop ones.

Thus, the fulfilled numerical analysis shows that the isotropic fixed point location estimate
obtained in the four-loop level occurs close to the six-loop value. One can expect, therefore,
that in the case of the cubic model the fixed point locations uc = 1.3428 ± 0.0200,
vc = 0.0815 ± 0.0300 (fourth column of table 1) will not be strongly distinguished from
the ‘exact’, say, the six-loop, values. The coordinates of the cubic fixed point for some
N are presented in table 2. Our calculations show that for N = 3 the coordinates of the
cubic fixed point practically do not differ from those of the Heisenberg one. However, with
increasing N the cubic fixed point runs away from the isotropic point moving towards the
Ising one. In the large-N limit these two fixed points become close to each another so much
that the influence of the O(N)-symmetric invariant on the critical thermodynamics of the
cubic model vanishes. This can be easily seen by applying the 1/N consideration to the one-
loop solutions of the RG equations of model (1). Indeed, rescaling the coupling constants
u → u/N , v → v/N in the initial Hamiltonian and taking then the limit N → ∞ one
can see that the cubic fixed point approaches the Ising one asymptotically. So, the cubic
model turns out to be split into N non-interacting Ising models, the critical behaviour of
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Table 2. Coordinates of the cubic fixed point of RG equations for some N found under the optimal
value of the transformation parameter b within the four-loop approximation. The average values
of the coordinates calculated over the most stable Padé approximants [2/2] are also presented for
comparison.

N 4 5 6 7 8 9 10

uc 0.9055 0.6980 0.5807 0.5060 0.4544 0.4168 0.3881
vc 0.8167 1.2361 1.5386 1.7874 2.0076 2.2108 2.4032
uc [2/2] 0.8981 0.6886 0.5708 0.4962 0.4448 0.4074 0.3789
vc [2/2] 0.8380 1.2608 1.5649 1.8148 2.0359 2.2400 2.4333

each of them will be determined by a set of the critical exponents renormalized according to
Fisher [20].

Another way to determine the fixed point locations in fixed D is to construct the RG
flows diagram of the model. If, at the flows diagram, there exists a fixed point of stable knot
type, the trajectories originating from some point within the range of stability of the initial
Hamiltonian would flow towards the knot. The region at the flow diagram where the trajectories
are intersected provides the coordinates of the stable fixed point. Investigating the 3D RG flow
diagram of model (1) in the four-loop approximation we arrive at the conclusion that the cubic
rather than the isotropic fixed point is absolutely stable for all N � 3.

At the same time, the reliable prediction about the stability of the cubic fixed point for
N � 3 can be made on the basis of calculating the eigenvalue exponents λ’s of the stability
matrix

Mij =
(

∂βu/∂u ∂βu/∂v

∂βv/∂u ∂βv/∂v

)

taken at u = uc and v = vc. If the real parts of both eigenvalues are negative, the fixed
point is the stable knot in the (u, v)-plane. If λ1, λ2 have opposite signs, the point is of the
‘saddle-knot’ type.

To calculate the stability matrix eigenvalues of the cubic and isotropic fixed points we have
chosen the following strategy. First, the derivatives of theβ-functions (7) and (8) are calculated,
and the new RG expansions resummed by means of the PBL technique are substituted into
the matrix Mij . The eigenvalue exponents of the matrix of derivatives Mij obtained in such a
way are then evaluated under the optimal value of the transformation parameter b. In figure 3
we present our numerical results for the series −∂βu/∂u and −∂βv/∂v for the physically
interesting case N = 3. The curves correspond to the three types of Padé approximants
used within the four-loop approximation. The crossing of the curves gives the optimal value
of b at which we find (∂βu/∂u)|opt = −0.7536 and (∂βv/∂v)|opt = −0.0331. Because
the series −∂βu/∂v and −∂βv/∂u turn out to be shorter by one order in comparison with
−∂βu/∂u and −∂βv/∂v, their resumming performed with the help of the approximant [2/1]
only yields the monotonic dependence of the result of processing on the parameter b. In this
unfavourable situation, we take into account an additional Padé approximant [1/1] to optimize
the iteration procedure. The results are plotted in figure 4. For the optimal values of b we
obtain (∂βu/∂v)|opt = −0.4566 and (∂βv/∂u)|opt = −0.0409. Straightforward calculation
of the eigenvalues of the stability matrix Mij gives for the cubic fixed point the numbers
provided in table 3. The eigenvalues of the isotropic fixed point as well as the analogous
numerical estimates obtained recently in [14] on the basis of using the five-loop ε-expansions
are presented for comparison therein. These estimates show that the cubic fixed point is
absolutely stable in 3D for N = 3, while the isotropic fixed point appears to be stable on
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Figure 3. Graphs of the dependence of the results of processing of the series (a) −∂βu/∂u, (b)
−∂βv/∂v on the parameter b, N = 3. The curves are given in the same notation as in the previous
figures.

Figure 4. Graphs of dependence of the results of processing of the series (a) −∂βu/∂v, (b) −∂βv/∂u

on the parameter b, N = 3. For the curves corresponding to the approximants [1/1] and [2/1] the
notation � and � are used, respectively.
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Table 3. Four-loop eigenvalue exponents estimates for the cubic (CFP) and isotropic (IFP) fixed
points found for N = 3 under the optimal value of the transformation parameter b.

CFP CFP [14] IFP IFP [14]

λ1 −0.7786 −0.7648 −0.7791 −0.7640
λ2 −0.0081 −0.0085 0.0077 0.0089

the u-axis only. Our numerical results agree well with those obtained in [14]. Unfortunately,
at present we cannot indicate realistic error bounds in our calculation of the stability matrix
eigenvalues. Nevertheless, a crude estimate can be done. In fact, if the model (1) is almost
identical to some marginal system for which Nc = 3 in 3D, the stability index λ2 both for the
isotropic and for the cubic fixed points should be equal to zero at N = 3 and, consequently,
the points should coincide. Therefore, as can be seen from the numbers given in table 3, the
four-loop approximation predicts eigenvalues with an error of about 0.01. Of course, dealing
with the theory without a small parameter and the short perturbative expansions one would
refer to such a level of accuracy as satisfactory. However, numerically small errors may lead,
sometimes, to qualitatively incorrect results [34].

Note that although the recent high-precision MC simulation using finite-size scaling
techniques [15] predicts the stability of the isotropic rather than the cubic fixed point, the
absolute value of the stability eigenvalue |λ2| obtained for the isotropic point turned out to be
very small. This is in accordance with our estimate.

Let us now calculate the critical dimensionality Nc of the order parameter field. The
critical dimensionality is defined as a value of N at which the cubic fixed point coincides
with the isotropic one. Equivalently, for N = Nc the second eigenvalue of the stability
matrix Mij vanishes, λ2 = 0. Studying carefully the 3D RG flow diagram of model (1)
depending on the order of approximation for different Padé approximants we arrive at the
conclusion that Nc = 2.910 ± 0.035 and Nc = 2.890 ± 0.020 within the three- and four-loop
approximations, respectively. The accuracy of the calculation of Nc was determined through
the evaluation of the stability matrix eigenvalues for different N from the interval of errors
mentioned above. That value of N = Nc, above or below its central number, at which the
second eigenvalue λ2 was becoming non-zero, was taking for the upper or lower boundary of
Nc, respectively.

It is worth comparing the four-loop estimate of Nc just found with that which can be
obtained within the ε-expansion method. The five-loop ε-expansion forNc has been calculated
in [11]. The series turned out to be alternating in signs that allows one to resum it by means of
the PBL technique. To this end, we use again the most appropriate Padé approximants [2/1],
[3/1] and [2/2] for analytical continuation of the Borel–Leroy transform for all 0 � εt � ∞.
Dependence of the results of processing of the critical dimensionality Nc on the transformation
parameter b is depicted in figure 5. The curves corresponding to the approximants are crossed
at the point b ∼ 1. The appropriate value of the critical dimensionality is Nc = 2.894±0.040.
As an error of the calculation it is natural to assume the maximum scattering of numerical
values given by the approximants at b = 0 from that obtained at the crossing point of the
curves. This estimate of Nc is in excellent accordance with the above found within the 3D RG
approach. It also agrees well with the estimates obtained earlier on the basis of the different
resummation technique [9, 10]. So, both schemes, the RG technique directly in 3D and the
ε-expansion method, result in the same estimate of the critical dimensionality Nc = 2.89, thus
implying that the cubic fixed point is stable in three dimensions for N � 3. This means that the
critical behaviour of the magnetic phase transitions in crystals with cubic anisotropy should
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Figure 5. Dependence of the results of processing of the ε-series for the critical dimensionality Nc
on the transformation parameter b.

belong to the cubic rather than the isotropic universality class with a certain set of critical
exponents. However, due to the obvious marginality of the model (Nc ∼ 3) and closeness of
both (isotropic and cubic) fixed points on the 3D RG flow diagram for N = 3, the critical
exponents values of the cubic point will be practically the same as the isotropic one. That is
why the calculation of the critical exponents in cubic magnets with N = 3 seems to be of
academic interest only.

Conclusion

To summarize, the complete analysis of the global structure of RG flows of a model with
two quartic coupling constants associated with isotropic and cubic interactions describing
magnetic and structural phase transitions in a good number of real substances has been carried
out within the massive field theory directly in three dimensions. Perturbative expansions for
the β-functions were deduced for generic N up to four-loop order. The fixed points locations
were found forN � 3 by applying the generalized Padé–Borel–Leroy resummation technique.
On the basis of comparative numerical analysis with the O(N)-symmetric models, the fixed
point locations for which have been solidly established [31, 32], we have made the assumption
that the four-loop estimates of the cubic fixed point locations should not differ strongly from
the ‘exact’ values within the error bounds.

The analysis of the eigenvalue exponents of the isotropic and cubic fixed points fulfilled
for the physically significant caseN = 3 has shown that the cubic rather than the isotropic fixed
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point is absolutely stable in 3D. The eigenvalues estimates (see table 3) were found to agree
well with those calculated on the basis of exploiting the five-loop ε-expansions combined with
a careful resummation procedure [14]. Our results agree numerically with the recent high-
precision MC estimates [15], in spite of the latter predicting the stability of the isotropic rather
than the cubic fixed point.

The critical dimensionality Nc of the order parameter, at which the topology of the flow
diagram changes, has been estimated by the two different methods: (a) by resumming the four-
loop RG expansions for the β-functions in 3D and (b) by resumming the five-loop ε-expansion
for Nc at ε = 1. The numerical estimates Nc = 2.89 ± 0.02 and Nc = 2.894 ± 0.040 obtained
are in a good agreement with the earlier results [9, 10] and confirm the conclusion about the
stability of the cubic fixed point for N � 3. Consequently, the magnetic and structural phase
transitions in three-dimensional anisotropic crystals with cubic symmetry are of second order
and their critical thermodynamics should be governed by the cubic fixed point with a certain
set of critical exponents. Unfortunately, the cubic universality class is not easily distinguished
experimentally from the isotropic one, due to the obvious marginality of the problem, Nc ∼ 3.
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